Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay

نویسندگان

  • W. Huang
  • M. Puckett
چکیده

Many models in biology and ecology can be described by reaction-diffusion equations wit time delay. One of important solutions for these type of equations is the traveling wave solution that shows the phenomenon of wave propagation. The existence of traveling wave fronts has been proved for large class of equations, in particular, the monotone systems, such as the cooperative systems and some competition systems. However, the problem on the uniqueness of traveling wave (for a fixed wave speed) remains unsolved. In this paper, we show that, for a class of monotone diffusion systems with time delayed reaction term, the mono-stable traveling wave font is unique whenever it exists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of non-monotone critical traveling waves for reaction–diffusion equations with time-delay

This paper is concerned with the stability of critical traveling waves for a kind of non-monotone timedelayed reaction–diffusion equations including Nicholson’s blowflies equation which models the population dynamics of a single species with maturation delay. Such delayed reaction–diffusion equations possess monotone or oscillatory traveling waves. The latter occurs when the birth rate function...

متن کامل

Perron Theorem in the Monotone Iteration Method for Traveling Waves in Delayed Reaction-diffusion Equations

In this paper we revisit the existence of traveling waves for delayed reaction diffusion equations by the monotone iteration method. We show that Perron Theorem on existence of bounded solution provides a rigorous and constructive framework to find traveling wave solutions of reaction diffusion systems with time delay. The method is tried out on two classical examples with delay: the predator-p...

متن کامل

Exponential Stability of Nonmonotone Traveling Waves for Nicholson's Blowflies Equation

This paper is concerned with Nicholson’s blowflies equation, a kind of time-delayed reaction-diffusion equation. It is known that when the ratio of birth rate coefficient and death rate coefficient satisfies 1 < p d ≤ e, the equation is monotone and possesses monotone traveling wavefronts, which have been intensively studied in previous research. However, when p d > e, the equation losses its m...

متن کامل

Non-monotone travelling waves in a single species reaction-diffusion equation with delay

We prove the existence of a continuous family of positive and generally non-monotone travelling fronts for delayed reaction-diffusion equations ut(t, x) = ∆u(t, x)−u(t, x)+ g(u(t − h, x)) (∗), when g ∈ C(R+, R+) has exactly two fixed points: x1 = 0 and x2 = K > 0. Recently, non-monotonic waves were observed in numerical simulations by various authors. Here, for a wide range of parameters, we ex...

متن کامل

Global dynamics for a class of non-monotone time-delayed reaction-diffusion equations

This paper deals with a large class of non-monotone time-delayed reaction-diffusion equations in which the reaction term can be spatially nonlocal. Nonexistence, existence, uniqueness and global attractivity of positive equilibriums to the equation are addressed. In particular, developed is a technique that combines the method of super-sub solutions, the variation-of-constants formula for the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009